Presentation on Light Weighting Technology

AutoDynamic Technologies & Solutions Pvt Ltd "Delivering Ideas to Products"

Date: 22 Dec 2022

APPL GROUP

AUTODYNAMIC

TECHNOLOGIES &

SOLUTIONS PVT LTD

(USD 3.5 Million)

(83 Employees)

(DUNS No 87-140-7590)

- USD 72 Million
- 370 employees
- IATE 16949 certified
- DUNS No: 650348753

2

APPL INDUSTRIES LIMITED

OTHER GROUP COMPANIES (230 EMPLOYEES)

AUTO DYNAMICS

APPL GLOBAL INFOTECH PRIVATE LIMITED (54 employees)

APPL GLOBAL INFO TECH

PP COMPOUNDS

PLASTIC ENGINEERING

- **ENGINEERING PLASTICS**
- **SPECIALTY COMPOUNDS**

STRUCTURAL PLASTIC **PARTS**

- **GLASS AND CARBON FILLED COMPONENTS**
- **AUTOMOTIVE**
- **INDUSTRIAL**
- **EXPORT PRODUCTS**

- PRODUCT DESIGN
- **PRODUCT DEVELOPMENT**
- SIMULATION, CAE
- TOOL DESIGN

AUTO DYNAMICS

VISION - AUTODYNAMICS

To bring unique, innovative products and solutions that are ahead of the times which satisfy a wide range of basic and implied needs in the Indian and Export market

Our Design Capabilities

- ☐ Full Service supplier Projects
- Optimization and product performance improvement studies
- ☐ Value Analysis & Value Engineering
- Support to NA & European technical centres and captive units in India
- Support to India Automotive OEM and tier suppliers
- Support to Non automotive Customers around world

CAE Software (APPGIL)

- Linear □ Dynamic- Vibrations,
- Response analysis □ Product optimization and

weight reduction

Modal, Frequency

Durability

ALTAIR+APPLG

- □ Auto CRASH Analysis
- ☐ Thermal Analysis
- □CFD
- ☐Multi Bodv **Dynamics**
- ☐ Forming Simulation
- ☐ Fatigue & Impact Analysis

Product CAE (Desired DVP)

Material

selection

sheet

generatio

CAE Process

Case Study -Static Linear analysis

Input DVP

1. Loading condition

Analysis:-Optistruct

- 2. delta< 15mm, Linear static,
- 3. CAD Data in sheet metal
- 4. Regulation & Standards

• Meshing:-Hypermesh

Physical test

Load in Kg	Specification	Deflection in mm(D1)											
		Initial	After 10,000 Cycles	20,000	After 30,000 Cycles	After 40,000 Cycles	After 50,000 Cycles	60,000	After 70,000 Cycles	After 80,000 Cycles	After 90,000 Cycles	After 1,00,000 Cycles	Remark
0	Specification not available for data generation	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	- Data generation only
20		2.986	3.520	3.354	3.548	3.125	3.205	3.197	2.826	3.141	2.981	2.960	
40		6.322	6.090	6.254	6.375	5.980	5.959	6.210	5.670	6.031	5.915	5.948	
60		9.698	8.690	8.845	8.956	8.761	8.488	8.588	8.195	8.733	8.524	8.611	
80		13.260	1.602	11.688	11.721	11.250	11.278	11.301	11.298	11.345	11.323	11.351	
	Set value (after load removed)	0.177	0.340	0.065	0.115	0.192	0.121	0.231	0.225	0.284	0.218	0.235	

Material:-PP 30GF

Result

Displacement 12.56mm

Physical Test

• Load case: Front 80Kg+ Rear 80Kg

• Cycles: 1Lakh+30000cycles

Test Result:

Displacement ~13mm

Conclusion:

CAE Simulation values found to match to the physical test results

Quasi-Static Impact Analysis of FUPD

Input DVP

1. Loading condition- AIS- 069 (ARAI Standard)

- 2. Deflection < 400 mm, Quasi-static,
- 3. CAD Data in sheet metal

Physical Test

Load vs. deflection graph

Fig. 6 below shows the load vs. deflection curve during the static test of FUPD LH side. Total deflection at $80\,kN$ was $30.71\,mm$.

Fig. 6: Graph of load v/s deflection for point P1 (LH).

Analysis:-Radioss

Material:-Composite GF+Epoxy

Fig. 7: Graph of load v/s deflection for point P2 (LH).

Load	Physical testing total deflection	Permanent set (mm)	Elastic set (Only FUPD)	FE Result (Only FUPD)	
P1	30.71 mm	11	19.71 mm	19.12 mm	
P2	16.38 mm	5	11.38 mm	10.95 mm	
P2	11.67 mm	4	7.67 mm	3.16 mm	

Conclusion:

CAE Result

CAE Simulation values found to match to the physical test results

Integrity | Excellence | Customer Focus | Technology Edge | Responsibility

Case Specific -Thermal analysis for EV battery cooling systems

Copyright @ 2014 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Thermal analysis for EV battery cooling systems

- Flow
- Thermal Steady and Transient
- Design iterations

Evaluation for different cooling methods

Flow and heat transfer of liquid cooling within a battery pack module

We have technology tie up with Altair Engineering

Injection Molded Composites (IMC)

Technology & References

IMC Machine @ AutoD

Continuous Glass Fiber being fed into the machine

IMC PRINCIPLE

Get the Benefit together

Injection Molded Composite Process - Principle

Injection Molding:

Single screw

Material processing

Discontinuous process

Extrusion:

Twin screw

Material compounding

Continuous process

Continuous and discontinuous - Two in One

IMC PRINCIPLE

What makes an IMC suitable for long glass fiber applications?

IMC with platform scale

Material Properties

Influence of fiber length on mechanical properties

Long glass fiber – PP/GF (qualitative)

Source: FH Rosenheim, Prof. Schemme, based on Thomason& Vlug

Proprietary Test Specimen Mold

1	2	3	4	5	6	7	8	9	Avg.
39.90	41.50	40.54	39.5	40.65	40.12	38.31	41.11	40.37	40.22
40.47	40.36	40.56	39.4	40.91	41.69	41.00	40.43	40.38	40.57

ACTUAL FIBER LENGTH

Note - Testing done on part level, test specimens cut from the actual molded part.

Part thickness was in the range of 2.5 to 2.7 mm.

Fiber length - GF Injection molding = < 0.5 mm

- LFT / LGF Injection Molding = < 1mm
- IMC = minimum 5mm & even more than 30mm in MANY areas

Potential Parts

STRUCTURAL COMPONENTS

Light Weighting

Case Studies using IMC Technology

Reference Case Study

Rear Foot Step

Weight:

2.25 kg (30% Saving)

- ➤ Part Integration
- ➤ Less Inventory
- ➤ Lower cost

Weight:

1.05 kg (52% Saving)

- Eliminated Powder Coating
- Lower Cost
- Meets Crash Intrusion Requirements

Reference case Study

Fabrication – Metal

Weight: 9.445 kg each

- Eliminate –
- O3 FRONT BRKT SIDE FOOT STEP RH
 - O4 REAR BRKT SIDE FOOT STEP RH
 - O6 REINF CENTRE SIDE FOOT STEP
 - O7 BRACKET REINFORCEMENT SIDE FOOT STEP
 - O8 MIDDLE BRKT SIDE FOOT STEP RH
 - O9 BRKT RNFRCMNT FRT MID FT STEP.
- No Change in Mounting location on Vehicle
- Existing Metal end cap brackets modify to accommodate IMC molded bracket.
- No Change in existing PLASTIC END CAPS, ALUMINUM PART and STIFFENER SIDE FOOT STEP (05)

IMC - Long Glass Fibre

Weight: 6.149 kg each

Weight Saving: 34.89%

Tailgate Assembly – Indian OEM

Material: PPCGF 30%

Weight of Plastic Part: ~8.2 kg

Weight Reduction: 30%

Provision for Switch Bezel & Canister Assembly

Material: PA 6 – 40% LFT

Weight reduction: 40% - 48%

String Ribbing for better strength & durability

- Ability of PU Over molding
- Back cover (Optional)

Hospital Bed & Food Carrier

Weight: 5.90 kg (28% Saving)

Weight: 3.85 kg (37% Saving)

Glass / Carbon / Aramid Fabric <u>Enhancing IMC Capability</u>

Technology & References

Enhancing IMC Capability

Enhancing IMC Capability

Items	unit	According to Standar	Value
Polymer	-	-	PP
Fiber	-	-	E-glass
Fiber content	vol.%	ISO 1172	45
Density	g/cm³	ISO 1183-1	1.69
Thickness per layer	mm	-	0.5
Tensile strength	MPa	ISO 527-4	370
Tensile modulus	GPa	ISO 527-4	17
Flexural strength	MPa	ISO 14125	350
Flexural modulus	GPa	ISO 14125	16
Charpy notched impact strength	n kJ/m²	ISO 179	118

Finalised Material Option

Weight: 3.218 kg Thickness: 0.9 mm

Current design: Steel

Displacement: 3.045 mm

Proposed design: PP CGF 30 %

Displacement: 1.24 mm

Proposed design: PA 6 CGF 30%

Displacement: 0.95 mm

Molding in IMC with Glass Laminate

Manufacturing Capability

Our Manufacturing Capabilities

Molding capability available at our Hinjewadi Location:

2300 T Injection Molding Machine (1Nos).

Key features:

- 1. Twin Screw to ensure homogenization, glass/Carbon fibers with Polyolefins, Polyamide.
- 2. High buffer zone capacity for higher shot size
- 3. 2300 Tons clamping force for larger parts
- 4. OHIM (On-Line Injection Hot-press Molding) facility
- 5. Capability to produce Carbon Fiber reinforced parts.
- **1000 T Injection Molding Machine** (1No)
- **700 T Injection Molding Machine** (1No)
- ☐ 450 T Injection Molding Machine (2Nos)
- ☐ Ultrasonic welding machine.
- ☐ Assembly line with poka-yoke.

Production Facility

1000 T IMC Machine

2300 T IMC Machine

Ultrasonic Welding Machine

34

Assembly Line

AUTO DYNAMICS

Integrity | Excellence | Customer Focus | Technology Edge | Responsibility

Our Quality Testing Capabilities

We have our **NABL Accredited Lab** with in-house facilities of Research & Technology Centre at Hinjewadi, Pune

Specialized testing outsourced & monitored by ARAI, Auto-Cluster etc. RTC labs under certification of TS 16949 and NABL

Supplier Awards

Zero Defect Supplier - BEL

Best Emerging Supplier - IAC

IATE Certification 16949: 2016

Automotive Management System

CERTIFICATE

This is to certify that

Autodynamics Technologies And Solutions Pvt. Ltd.

Survey No.279, Hissa No.1 Hinjewadi Phase II, Maan, Muishi Pune - 411 057 Maharashtra

has implemented and maintains a Quality Management System.

Scope:

Manufacture of Injection Moided Parts, Injection Moided Composites and its Assemblies.

An audit, conducted and documented in a report, has verified that this quality management system fulfills the requirements of the following International Automotive Standard:

IATF 16949:2016

(without product design)

50255880 IATE16

2021-10-07 This certificate is valid until 2024-10-06

For and on behalf of DQS

IATF Contract Office: DQS Holding GmbH, Konrad-Adenauer-Allee 8-10, 61118 Bad Vilbel, Germany

NABL Certification

National Accreditation Board for Testing and Calibration Laboratories (A Constituent Board of Quality Council of India)

CERTIFICATE OF ACCREDITATION

AUTODYNAMIC TECHNOLOGIES & SOLUTIONS PRIVATE LIMITED

has been assessed and accredited in accordance with the standard

ISO/IEC 17025:2017

"General Requirements for the Competence of Testing & Calibration Laboratories"

for its facilities at

279/1 & 2, Raisoni Industrial Park, Phase II, Village-Mann, Tal. Mulshi, Dist. Pune, Maharashtra

in the field of

TESTING

Certificate Number Issue Date

TC-7714 06/09/2019

Valid Until 21/09/2020

This certificate remains valid for the Scope of Accreditation as specified in the annexure subject to continued satisfactory compliance to the above standard & the relevant requirements of NABL. (To see the scope of accreditation of this laboratory, you may also visit NABL website www.nabl-india.org)

Signed for and on behalf of NABL

N. Venkateswaran

Assembly Operations

ATSPL have capability of assembly operations. We are supplying to:

- Mahindra electric ER project
- Mail box- US export project

Quality Checking Gauges

ATSPL have capability of checking & validation of parts & other quality operations.

SCM Logistics

ATSPL have good SCM capability across India over 7 locations. We have good exposure with exports as well

Filled with Parts .Each Part secured

Trolley

Sustainable Long Term Benefits- IMC

Weight reduction of 30% to 50% - Impact due to

>Specific gravity difference between metal & plastics.

Cost reduction of 10% to 20% - Impact due to

- ➤ Process cost Combination of 2 process of extrusion & injection molding to 1 process of IMC.
- ➤ Raw Material Cost Elimination of RM cooling, drying, packing, transport and then re-melting granules in injection molding to make parts. Can select RM ingredients and compound & injection in 1 shot.
- ➤ Quality improvement Better Retention of Polymer properties by reducing one melting cycle

Thank You